手機版當前位置: 主頁 > 行測 > 資料分析 >

公務員考試資料分析四大速算技巧

來源:資料分析技巧   gkz6   2012-01-30

資料分析四大速算技巧

“差分法”是在比較兩個分數大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。

適用形式:兩個分數作比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。

基礎定義:

在滿足“適用形式”的兩個分數中,我們定義分子與分母都比較大的分數叫“大分數”,分子與分母都比較小的分數叫“小分數”,而這兩個分數的分子、分母分別做差得到的新的分數我們定義為“差分數”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數”,313/51.7就是“小分數”,而324-313/53.1-51.7=11/1.4就是“差分數”。

“差分法”使用基本準則——“差分數”代替“大分數”與“小分數”作比較:

1、若差分數比小分數大,則大分數比小分數大;

2、若差分數比小分數小,則大分數比小分數;

3、若差分數與小分數相等,則大分數與小分數相等。

比如上文中就是“11/1.4代替324/53.1與313/51.7作比較”,因為11/1.4>313/51.7(可以通過“直除法”或者“化同法”簡單得到),所以324/53.1>313/51.7。

 

特別注意:

一、“差分法”本身是一種“精算法”而非“估算法”,得出來的大小關系是精確的關系而非粗略的關系;

二、“差分法”與“化同法”經常聯系在一起使用,“化同法緊接差分法”與“差分法緊接化同法”是資料分析速算當中經常遇到的兩種情形。

三、“差分法”得到“差分數”與“小分數”做比較的時候,還經常需要用到“直除法”。

四、如果兩個分數相隔非常近,我們甚至需要反復運用兩次“差分法”,這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。

 

【例1】比較7/4和9/5的大小

·【解析】運用“差分法”來比較這兩個分數的大小關系:
大分數 小分數
9/5 7/4
9-7/5-1=2/1(差分數)
根據:差分數=2/1>7/4=小分數
因此:大分數=9/5>7/4=小分數
提示:
使用“差分法”的時候,牢記將“差分數”寫在“大分數”的一側,因為它代替的是“大分數”,然后再跟“小分數”做比較。

 

【例2】比較32.3/101和32.6/103的大小

【解析】運用“差分法”來比較這兩個分數的大小關系:
小分數 大分數
32.3/101 32.6/103
32.6-32.3/103-101=0.3/2(差分數)
根據:差分數=0.3/2=30/200<32.3/101=小分數(此處運用了“化同法”)
因此:大分數=32.6/103<32.3/101=小分數
[注釋] 本題比較差分數和小分數大小時,還可采用直除法,讀者不妨自己試試。

 

【例3】比較29320.04/4126.37和29318.59/4125.16的大小

【解析】運用“差分法”來比較這兩個分數的大小關系:
29320.04/4126.37 29318.59/4125.16
1.45/1.21
根據:很明顯,差分數=1.45/1.21<2<29318.59/4125.16=小分數
因此:大分數=29320.04/4126.37<29318.59/4125.16=小分數
[注釋] 本題比較差分數和小分數大小時,還可以采用“直除法”(本質上與插一個“2”是等價的)。

 

【例4】下表顯示了三個省份的省會城市(分別為A、B、C城)2006年GDP及其增長情況,請根據表中所提供的數據回答:
1.B、C兩城2005年GDP哪個更高?
2.A、C兩城所在的省份2006年GDP量哪個更高?
GDP(億元) GDP增長率 占全省的比例
A城 873.2 12.50% 23.9%
B城 984.3 7.8% 35.9%
C城 1093.4 17.9% 31.2%

【解析一】
B、C兩城2005年的GDP分別為:984.3/1+7.8%、1093.4/1+17.9%;觀察特征(分子與分母都相差一點點)我們使用“差分法”:
984.3/1+7.8% 1093.4/1+17.9%
109.1/10.1%
運用直除法,很明顯:差分數=109.1/10.1%>1000>984.3/1+7.8%=小分數,故大分數>小分數
所以B、C兩城2005年GDP量C城更高。

【解析二】
A、C兩城所在的省份2006年GDP量分別為:873.2/23.9%、1093.4/31.2%;同
樣我們使用“差分法”進行比較:
873.2/23.9% 1093.4/31.2%
220.2/7.3%=660.6/21.9%
212.6/2%=2126/20%
上述過程我們運用了兩次“差分法”,很明顯:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;
因此2006年A城所在的省份GDP量更高。

 

【例5】比較32053.3×23487.1和32048.2×23489.1的大小

【解析】32053.3與32048.2很相近,23487.1與23489.1也很相近,因此使用估算法或者截位法進行比較的時候,誤差可能會比較大,因此我們可以考慮先變形,再使用“差分法”,即要比較32053.3×23487.1和32048.2×23489.1的大小,我們首先比較32053.3/23489.1和32048.2/23487.1的大小關系:
32053.3/23489.1 32048.2/23487.1
5.1/2
根據:差分數=5.1/2>2>32048.2/23487.1=小分數
因此:大分數=32053.3/23489.1>32048.2/23487.1=小分數
變型:32053.3×23487.1>32048.2×23489.1
(乘法型“差分法”):
要比較a×b與a′×b′的大小,如果a與a'相差很小,并且b與b'相差也很小,這時候可以將乘法a×b與a′×b′的比較轉化為除法ab′與a′b的比較,這時候便可以運用“差分法”來解決我們類似的乘法型問題。我們在“化除為乘”的時候,遵循以下原則可以保證不等號方向的不變:

“化除為乘”原則:相乘即交叉。

下一頁:直除法、平方數速算、尾數法速算>>

信息報錯網站上的任何錯誤,請提交給我們

熱門點擊

公務員,考試,資料分,四大,速算,技巧,資料分,四大,速算,
门业店赚钱吗 20选8快乐十分开奖结果 天天手机捕鱼下分版 股票趋势与技术分析 波克棋牌旧版本 浙江体彩11选五玩法介绍 浙江麻将下载安装 宁夏11选五跨度走势图 30选5最新开奖结果 紫幻河南麻将下载苹果版 新股票交易规则